2 research outputs found

    Design of Film Bulk Acoustic Wave Sensor for Internet of Things (IoT) Applications

    Get PDF
    التوسع السريع لإنترنت الاشياء أدى إلى زيادة الطلب على تقنيات الاستشعار المبتكرة التي يمكن أن توفر بيانات في الوقت الفعلي لمختلف التطبيقات. رنانات الموجات الصوتية ذات الاغشية الرقيقة (FBARs) هي رنانات مصغرة تستخدم التأثير الكهرو إجهادي لإنشاء إشارات كهربائية باستخدام الاهتزازات الميكانيكية والعكس صحيح. ظهرت رنانات FBAR كمتحسسات واعدة لتطبيقات الاستشعار في إنترنت الأشياء نظرًا لحجمها الصغير وحساسيتها العالية وتوافقها مع تقنيات التصنيع الدقيق. يقدم هذا البحث تصميم مستشعر FBAR  لتطبيقات انترنت الاشياء التي تتكون من أكسيد الزنك (ZnO) و ليثيوم نيوباتيت(LiNbO3)  كمواد كهروضغطية والالمنيوم كأقطاب كهربائية علوية وسفلية. تظهر النتائج الأداء المتفوق للرنان المقترح. بناءً على نتائج النمذجة ، فإن تردد الرنين هو 12.02 و 10.36 جيجاهرتز مع عامل جودة 936.7 و 941.3 ومعامل الاقتران الفعال 18.35 و 18.27٪ لـ أكسيد الزنك و ليثيوم نيوباتيت على التوالي.The Internet of Things (IoT) is expanding quickly, which has increased demand for innovative sensing technologies that can provide real-time data for various applications. Film Bulk Acoustic Wave Resonators (FBARs) are miniature resonators that utilize the piezoelectric effect to create electrical signals using mechanical vibrations and vice versa. FBAR resonators have emerged as promising candidates for sensor applications in IoT due to their compact size, high sensitivity, and compatibility with microfabrication techniques. This paper presents design of FBAR sensor as gas and pressure sensor for IOT applications consisting of zinc oxide (ZnO) and Lithium niobate (LiNbO3) as piezoelectric film and Aluminum (Al) as top and bottom electrodes. The results show the superior performance of the proposed resonator. Based on the modeling results, the structure's resonance frequency is 12.02 and 10.36 GHz with a quality factor of 936.7 and 941.3 and an effective coupling coefficient of  18.35 and 18.27 % for ZnO and LiNbO3 respectively

    Performance Analysis of MEMS Based Oscillator for High Frequency Wireless Communication Systems

    Get PDF
    The frequency oscillator is a basic component found in many electrical, electronic, and communications circuits and systems. Oscillators come in a variety of shapes and sizes, depending on the frequency range employed in a given application. Some applications need oscillators that generate low frequencies and other applications need oscillators that generate extremely high and high frequencies. As a result of the expansion and speed of modern technologies, new oscillators appeared that operating at extremely high frequencies. Most wireless communication systems are constrained in their performance by the accuracy and stability of the reference frequency. Because of its compatibility with silicon, micro-electro-mechanical system (MEMS) is the preferred technology for circuit integration and power reduction. MEMS are a rapidly evolving area of advanced microelectronics. The integration of electrical and mechanical components at the micro size is referred to as a MEMS. MEMS based oscillators have demonstrated tremendous high frequency application potential in recent years. This is owing to their great characteristics such as small size, integration of CMOS IC technology, high frequency-quality factor product, low power consumption, and cheap batch manufacturing cost. This paper's primary objective is to describe the performance of MEMS oscillator technology in high-frequency applications, as well as to discuss the challenges of developing a new MEMS oscillator capable of operating at gigahertz frequencies
    corecore